37 research outputs found

    Automated Detection of Sleep Stages Using Deep Learning Techniques: A Systematic Review of the Last Decade (2010–2020)

    Get PDF
    Sleep is vital for one’s general well-being, but it is often neglected, which has led to an increase in sleep disorders worldwide. Indicators of sleep disorders, such as sleep interruptions, extreme daytime drowsiness, or snoring, can be detected with sleep analysis. However, sleep analysis relies on visuals conducted by experts, and is susceptible to inter- and intra-observer variabilities. One way to overcome these limitations is to support experts with a programmed diagnostic tool (PDT) based on artificial intelligence for timely detection of sleep disturbances. Artificial intelligence technology, such as deep learning (DL), ensures that data are fully utilized with low to no information loss during training. This paper provides a comprehensive review of 36 studies, published between March 2013 and August 2020, which employed DL models to analyze overnight polysomnogram (PSG) recordings for the classification of sleep stages. Our analysis shows that more than half of the studies employed convolutional neural networks (CNNs) on electroencephalography (EEG) recordings for sleep stage classification and achieved high performance. Our study also underscores that CNN models, particularly one-dimensional CNN models, are advantageous in yielding higher accuracies for classification. More importantly, we noticed that EEG alone is not sufficient to achieve robust classification results. Future automated detection systems should consider other PSG recordings, such as electroencephalogram (EEG), electrooculogram (EOG), and electromyogram (EMG) signals, along with input from human experts, to achieve the required sleep stage classification robustness. Hence, for DL methods to be fully realized as a practical PDT for sleep stage scoring in clinical applications, inclusion of other PSG recordings, besides EEG recordings, is necessary. In this respect, our report includes methods published in the last decade, underscoring the use of DL models with other PSG recordings, for scoring of sleep stages

    Comprehensive electrocardiographic diagnosis based on deep learning

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death worldwide, and coronary artery disease (CAD) is a major contributor. Early-stage CAD can progress if undiagnosed and left untreated, leading to myocardial infarction (MI) that may induce irreversible heart muscle damage, resulting in heart chamber remodeling and eventual congestive heart failure (CHF). Electrocardiography (ECG) signals can be useful to detect established MI, and may also be helpful for early diagnosis of CAD. For the latter especially, the ECG perturbations can be subtle and potentially misclassified on manual interpretation and/or when analyzed by traditional algorithms found in ECG instrumentation. For automated diagnostic systems (ADS), deep learning techniques are favored over conventional machine learning techniques, due to the automatic feature extraction and selection processes involved. This paper highlights various deep learning algorithms exploited for the classification of ECG signals into CAD, MI, and CHF conditions. The Convolutional Neural Network (CNN), followed by combined CNN and Long Short-Term Memory (LSTM) models, appear to be the most useful architectures for classification. A 16-layer LSTM model was developed in our study and validated using 10-fold cross validation. A classification accuracy of 98.5% was achieved. Our proposed model has the potential to be a useful diagnostic tool in hospitals for the classification of abnormal ECG signals

    Automated analysis of small intestinal lamina propria to distinguish normal, Celiac Disease, and Non-Celiac Duodenitis biopsy images

    Get PDF
    Background and objective Celiac Disease (CD) is characterized by gluten intolerance in genetically predisposed individuals. High disease prevalence, absence of a cure, and low diagnosis rates make this disease a public health problem. The diagnosis of CD predominantly relies on recognizing characteristic mucosal alterations of the small intestine, such as villous atrophy, crypt hyperplasia, and intraepithelial lymphocytosis. However, these changes are not entirely specific to CD and overlap with Non-Celiac Duodenitis (NCD) due to various etiologies. We investigated whether Artificial Intelligence (AI) models could assist in distinguishing normal, CD, and NCD (and unaffected individuals) based on the characteristics of small intestinal lamina propria (LP). Methods Our method was developed using a dataset comprising high magnification biopsy images of the duodenal LP compartment of CD patients with different clinical stages of CD, those with NCD, and individuals lacking an intestinal inflammatory disorder (controls). A pre-processing step was used to standardize and enhance the acquired images. Results For the normal controls versus CD use case, a Support Vector Machine (SVM) achieved an Accuracy (ACC) of 98.53%. For a second use case, we investigated the ability of the classification algorithm to differentiate between normal controls and NCD. In this use case, the SVM algorithm with linear kernel outperformed all the tested classifiers by achieving 98.55% ACC. Conclusions To the best of our knowledge, this is the first study that documents automated differentiation between normal, NCD, and CD biopsy images. These findings are a stepping stone toward automated biopsy image analysis that can significantly benefit patients and healthcare providers

    Deep learning for healthcare applications based on physiological signals: A review

    Get PDF
    Background and objective: We have cast the net into the ocean of knowledge to retrieve the latest scientific research on deep learning methods for physiological signals. We found 53 research papers on this topic, published from 01.01.2008 to 31.12.2017. Methods: An initial bibliometric analysis shows that the reviewed papers focused on Electromyogram(EMG), Electroencephalogram(EEG), Electrocardiogram(ECG), and Electrooculogram(EOG). These four categories were used to structure the subsequent content review. Results: During the content review, we understood that deep learning performs better for big and varied datasets than classic analysis and machine classification methods. Deep learning algorithms try to develop the model by using all the available input. Conclusions: This review paper depicts the application of various deep learning algorithms used till recently, but in future it will be used for more healthcare areas to improve the quality of diagnosi

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Application of deep learning algorithms for automated detection of arrhythmias with ECG beats

    No full text
    Arrhythmia is the anomalies of cardiac conduction system that is characterized by abnormal heart rythms. Prolong arrhythmias are life threatening and can often lead to other cardiac diseases. Abnormalities in the conduction system is reflected upon the morphology of the electrocardiographic (ECG) signal and the assessment of these signal can be extremely challenging and time-consuming. Morphological features of arrythmias ECG signals are low in amplitudes and the changes within can sometimes be very subtle. Therefore, the main aim of this study is to develop an automated computer aided diagnostic (CAD) system that can potentially expedite the process of arrhythmia diagnosis, which will allow the clinicians to provide better care and timely intervention for the patient. In machine learning, the performance of classification largely depends on the quality of features extracted. Therefore, the process of obtaining useful information which effectively differentiate the specific classes into groups is crucial. Generally, there are two types of features used in machine learning, handcrafted features and learned features. Many of the techniques developed in earlier literature involved the use of handcrafted features. In order to engineer a handcrafted feature it typically requires one to have extensive domain knowledge and the latter experimentation cost in selecting the optimal features for a specific classification model can be costly as well. Learned features on the other hand is obtained though self-discovery by the artificial intelligence system, it obviates the process of manual engineering and the current state of the art technique used in obtaining learned feature is through deep learning. In this research, two different deep learning architectures are tested for diagnosing arrhythmic ECG signals. The first proposed deep learning architecture is a hybrid neural network of convolutional layers and long short-term memory (LSTM) units capable of providing single class prediction for each variable-length data ECG segments. The second proposed model is U-net ,a fully convolutional auto encoder with skip connections, which provides a much detailed analysis for the ECGs as each of the detected beats can be marked with a specific heart conditions. Both models are trained and tested against the MIT-BIT arrhythmia database. 5 cardiac conditions, normal sinus rhythm, atrial premature beats (APB), premature ventricular contraction (PVC), left bundle branch block (LBBB) and right bundle branch block (RBBB) are segmented from the recordings for evaluation. Additionally, the ten-fold cross validation strategy has been employed in the project to confirm the robustness of the proposed models. Findings of this research will redound in benefiting the ECG screening procedures, considering that deep learning models are capable of achieving considerable accuracy and details in categorizing the individual arrhythmias beats with minimal preprocessing applied. The future work intends to acquire more ECG records to increase the variance of the current dataset, implementation of generative adversarial network (GAN) for ECG augmentation and to explore on other cardiac diseases.Master of Engineerin

    Automated beat-wise arrhythmia diagnosis using modified U-net on extended electrocardiographic recordings with heterogeneous arrhythmia types

    No full text
    Abnormality of the cardiac conduction system can induce arrhythmia - abnormal heart rhythm - that can frequently lead to other cardiac diseases and complications, and are sometimes life-threatening. These conduction system perturbations can manifest as morphological changes on the surface electrocardiographic (ECG) signal. Assessment of these morphological changes can be challenging and time-consuming, as ECG signal features are often low in amplitude and subtle. The main aim of this study is to develop an automated computer aided diagnostic (CAD) system that can expedite the process of arrhythmia diagnosis, as an aid to clinicians to provide appropriate and timely intervention to patients. We propose an autoencoder of ECG signals that can diagnose normal sinus beats, atrial premature beats (APB), premature ventricular contractions (PVC), left bundle branch block (LBBB) and right bundle branch block (RBBB). Apart from the first, the rest are morphological beat-to-beat elements that characterize and constitute complex arrhythmia. The novelty of this work lies in how we modified the U-net model to perform beat-wise analysis on heterogeneously segmented ECGs of variable lengths derived from the MIT-BIH arrhythmia database. The proposed system has demonstrated self-learning ability in generating class activations maps, and these generated maps faithfully reflect the cardiac conditions in each ECG cardiac cycle. It has attained a high classification accuracy of 97.32% in diagnosing cardiac conditions, and 99.3% for R peak detection using a ten-fold cross validation strategy. Our developed model can help physicians to screen ECG accurately, potentially resulting in timely intervention of patients with arrhythmia.Accepted versio

    Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats

    No full text
    Arrhythmia is a cardiac conduction disorder characterized by irregular heartbeats. Abnormalities in the conduction system can manifest in the electrocardiographic (ECG) signal. However, it can be challenging and time-consuming to visually assess the ECG signals due to the very low amplitudes. Implementing an automated system in the clinical setting can potentially help expedite diagnosis of arrhythmia, and improve the accuracies. In this paper, we propose an automated system using a combination of convolutional neural network (CNN) and long short-term memory (LSTM) for diagnosis of normal sinus rhythm, left bundle branch block (LBBB), right bundle branch block (RBBB), atrial premature beats (APB) and premature ventricular contraction (PVC) on ECG signals. The novelty of this work is that we used ECG segments of variable length from the MIT-BIT arrhythmia physio bank database. The proposed system demonstrated high classification performance in the handling of variable-length data, achieving an accuracy of 98.10%, sensitivity of 97.50% and specificity of 98.70% using ten-fold cross validation strategy. Our proposed model can aid clinicians to detect common arrhythmias accurately on routine screening ECG.Accepted versio

    Explainable detection of myocardial infarction using deep learning models with Grad-CAM technique on ECG signals

    No full text
    Myocardial infarction (MI) accounts for a high number of deaths globally. In acute MI, accurate electrocardiography (ECG) is important for timely diagnosis and intervention in the emergency setting. Machine learning is increasingly being explored for automated computer-aided ECG diagnosis of cardiovascular diseases. In this study, we have developed DenseNet and CNN models for the classification of healthy subjects and patients with ten classes of MI based on the location of myocardial involvement. ECG signals from the Physikalisch-Technische Bundesanstalt database were pre-processed, and the ECG beats were extracted using an R peak detection algorithm. The beats were then fed to the two models separately. While both models attained high classification accuracies (more than 95%), DenseNet is the preferred model for the classification task due to its low computational complexity and higher classification accuracy than the CNN model due to feature reusability. An enhanced class activation mapping (CAM) technique called Grad-CAM was subsequently applied to the outputs of both models to enable visualization of the specific ECG leads and portions of ECG waves that were most influential for the predictive decisions made by the models for the 11 classes. It was observed that Lead V4 was the most activated lead in both the DenseNet and CNN models. Furthermore, this study has also established the different leads and parts of the signal that get activated for each class. This is the first study to report features that influenced the classification decisions of deep models for multiclass classification of MI and healthy ECGs. Hence this study is crucial and contributes significantly to the medical field as with some level of visible explainability of the inner workings of the models, the developed DenseNet and CNN models may garner needed clinical acceptance and have the potential to be implemented for ECG triage of MI diagnosis in hospitals and remote out-of-hospital settings

    Automated diagnostic tool for hypertension using convolutional neural network

    No full text
    Background: Hypertension (HPT) occurs when there is increase in blood pressure (BP) within the arteries, causing the heart to pump harder against a higher afterload to deliver oxygenated blood to other parts of the body. Purpose: Due to fluctuation in BP, 24-h ambulatory blood pressure monitoring has emerged as a useful tool for diagnosing HPT but is limited by its inconvenience. So, an automatic diagnostic tool using electrocardiogram (ECG) signals is used in this study to detect HPT automatically. Method: The pre-processed signals are fed to a convolutional neural network model. The model learns and identifies unique ECG signatures for classification of normal and hypertension ECG signals. The proposed model is evaluated by the 10-fold and leave one out patient based validation techniques. Results: A high classification accuracy of 99.99% is achieved for both validation techniques. This is one of the first few studies to have employed deep learning algorithm coupled with ECG signals for the detection of HPT. Our results imply that the developed tool is useful in a hospital setting as an automated diagnostic tool, enabling the effortless detection of HPT using ECG signals
    corecore